
SimEvents®

Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® Getting Started Guide
© COPYRIGHT 2005–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 First printing Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Second printing Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)
September 2020 Online only Revised for Version 5.9 (Release 2020b)
March 2021 Online only Revised for Version 5.10 (Release 2021a)

Introduction
1

SimEvents Product Description . 1-2
Key Features . 1-2

Discrete-Event Simulation in Simulink Models . 1-3
A Simple Queuing System . 1-3
Modeling Communication Delay on an Anti-Lock Braking System 1-3
Modeling a Hybrid System with Event-Based and Time-Based Components

. 1-6

Related Products . 1-7
Information About Related Products . 1-7
Limitations on Usage with Related Products . 1-7

SimEvents Common Design Patterns . 1-8

Bibliography . 1-12

Build Simple Models with SimEvents Software
2

Create a Discrete-Event Model . 2-2
Add SimEvents Blocks to a Model . 2-2
Configure Blocks . 2-3
A Simple Queuing System . 2-3
Results of the Simulation . 2-4

Explore Statistics and Visualize Simulation Results 2-6
Explore a D/D/1 System Using Plots . 2-7

Manage Entities Using Event Actions . 2-13
Start with a Simple Queuing System . 2-13
Modify the Model . 2-13
Configure and Simulate Model . 2-13
Modified Model to Manage Entities in a Queueing System 2-16

Trigger Simulink Components with Discrete Events in SimEvents 2-17

v

Contents

Key Concepts in SimEvents Software
3

Entities in a SimEvents Model . 3-2
Meaning of Entities in Different Applications . 3-2
Vary the Interpretation of Entities . 3-2
Visualize Entities . 3-3
Storing Entities . 3-3
Entity Types . 3-3
Data and Role of Entity Attributes . 3-4
Create Entities in a SimEvents Model . 3-4

Role of Entity Ports and Paths . 3-9
Entity Ports and Paths . 3-9
Definition of Entity Paths . 3-9
Implications of Entity Paths . 3-10
Designing Paths Using Input, Output, and Entity Combiner Blocks 3-10

Overview of Queues and Servers in Discrete-Event Simulation 3-12
Storage with Queues . 3-12
Storage with Servers . 3-13
Use Events and Event Actions in Queuing Systems 3-14
Serial Queue-Server Pairs . 3-14
Parallel Queue-Server Pairs as Alternatives . 3-15
Author Custom Storage Blocks Using MATLAB Discrete-Event System Block

and Discrete-Event Chart . 3-15

Inspect Statistics
4

Count Entities . 4-2
Count Departures Across the Simulation . 4-2
Count Departures per Time Instant . 4-2
Reset a Counter upon an Event . 4-2
Associate Each Entity with Its Index . 4-2

Simulate Multidomain Models
5

Create a Hybrid Model with Time-Based and Event-Based Components
. 5-2

Communication between SimEvents and Simulink components 5-2
SimEvents Part of Model . 5-3
Simulink Part of Model . 5-4
Simulate the Hybrid Model . 5-5
Event-Based and Time-Based Dynamics in the Simulation 5-6

vi Contents

Introduction

• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3
• “Related Products” on page 1-7
• “SimEvents Common Design Patterns” on page 1-8
• “Bibliography” on page 1-12

1

SimEvents Product Description
Model and simulate discrete-event systems

SimEvents provides a discrete-event simulation engine and component library for analyzing event-
driven system models and optimizing performance characteristics such as latency, throughput, and
packet loss. Queues, servers, switches, and other predefined blocks enable you to model routing,
processing delays, and prioritization for scheduling and communication.

With SimEvents, you can study the effects of task timing and resource usage on the performance of
distributed control systems, software and hardware architectures, and communication networks. You
can also conduct operational research for decisions related to forecasting, capacity planning, and
supply-chain management.

Key Features
• Discrete-event simulation engine for multidomain system models
• Entities with custom data attributes representing tasks, packets, and items
• Blocks for queuing, service, routing, resource management, multicasting, replication, and

batching
• Statistics generation for delay, throughput, average queue length, and other metrics
• Library authoring with MATLAB® or Stateflow® for custom schedulers, hardware and software

constructs, and communication channels
• Block diagram animation and inspection for visualizing model operation and debugging
• Custom animation creation for monitoring entities and events

1 Introduction

1-2

Discrete-Event Simulation in Simulink Models
In this section...
“A Simple Queuing System” on page 1-3
“Modeling Communication Delay on an Anti-Lock Braking System” on page 1-3
“Modeling a Hybrid System with Event-Based and Time-Based Components” on page 1-6

SimEvents integrates discrete-event system modeling into the Simulink time-based framework. In
time-based systems, a signal changes value in response to the simulation clock, and state updates
occur synchronously with time. By contrast, in discrete-event or event-based systems state transitions
depend on asynchronous discrete incidents called events.

Suppose that you want to measure how long the average car waits in a queue for its turn to fill its
tank at a busy gas station. Suppose that you also want to model the motion of the car by solving
differential equations. You can use a combination of time-based simulation and discrete-event
simulation, where:

• The time-based aspect controls the details of the car's trajectory
• The discrete-event aspect controls the queuing behavior

In a Simulink model, you typically construct a discrete-event system by adding various blocks, such as
generators, queues, and servers, from the SimEvents block library. These blocks are suitable for
producing and processing entities, which are abstractions of discrete items of interest. Examples of
entities are vehicles arriving at a gas station, packets within a communication network, planes on a
runway, or trains within a signaling system. Asynchronous events correspond to motion and changes
in entity attributes through the system model, and they update the states of the underlying system.
Examples of states are lengths of queues or service time for an entity in a server.

A Simple Queuing System
This SimEvents model represents a simple queuing system that generates entities of interest and
queues them in a specified order, services them to change their attributes, and terminates them to
represent their departure from the line. To learn how to build this model, see “Create a Discrete-
Event Model” on page 2-2.

The Entity Generator block is used to generate entities with a fixed or randomized intergeneration
time. The Entity Queue block queues the entities based on a specified order. The Entity Server block
services entities for a length of time. The entities depart the line through the Entity Terminator block.

Modeling Communication Delay on an Anti-Lock Braking System
The “Effects of Communication Delays on an ABS Control System” example provides a scenario for
investigating the communication delay in a car anti-lock braking system (ABS). The system uses
control area network (CAN) communications between components. The model illustrates a heavily
loaded network of a distributed system.

 Discrete-Event Simulation in Simulink Models

1-3

The model investigates the delay of communication between the ABS controller and the vehicle in
ideal conditions and in the presence of noise.

The CAN ID:5 subsystem consists of SimEvents library blocks that model a buffer in transmission,
message queues, and replicated messages for communication.

1 Introduction

1-4

The model is used to analyze the effect of communication delay on the slip value with the passage of
time. The slip value is 0 when the wheel speed and the vehicle speed are equal. The slip value is 1
when the wheels are completely locked. The desirable slip value is 0.2.

The plot on the left represents the slip in ideal conditions and on the right is the slip in the presence
of noise. The decrease in slip performance is detected in the model and resolved with reprioritization
of CAN messages.

For more information about the model, see “Effects of Communication Delays on an ABS Control
System”.

 Discrete-Event Simulation in Simulink Models

1-5

Modeling a Hybrid System with Event-Based and Time-Based
Components
One or more discrete-event systems can coexist with time-based systems in a Simulink model. This
coexistence facilitates the simulation of sophisticated hybrid systems. You can pass signals from time-
based components/systems to and from discrete-event components/systems modeled with SimEvents
blocks. The combination of time- and event-based modeling facilitates the simulation of large-scale
systems that incorporate smaller subsystems from multiple environments. An example of a large-scale
system has physical modeling for continuous-time systems, such as electrical systems, which
communicate via a channel modeled as a discrete-event system. A Simulink model can also contain a
purely discrete-event system with no time-based components when modeling event-based processes.
These systems are common in models that represent logistic and manufacturing systems.

The seExampleTankFilling model incorporates both time-based and event-based modeling to
represent vehicles queuing up to fill their tanks in a gas station.

The SimEvents part is an extension of the model presented in “A Simple Queuing System” on page 1-3
and it models the flow of the vehicle tanks. The tanks are generated, queued, and serviced to be
filled. The Simulink part models the logic to fill the tanks. When a tank is filled to capacity, the
completion of the tank filling process is detected and a message is sent to the SimEvents part to open
the gate for releasing the tank. For more information, see “Modeling Hybrid Systems - Tank Filling”.

See Also

Related Examples
• “Create a Discrete-Event Model” on page 2-2
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2
• “Effects of Communication Delays on an ABS Control System”

More About
• “SimEvents Product Description” on page 1-2
• “Entities in a SimEvents Model” on page 3-2
• “Events and Event Actions”
• “Bibliography” on page 1-12

External Websites
• Tech Talks: Understanding Discrete-Event Simulation

1 Introduction

1-6

https://www.mathworks.com/videos/series/understanding-discrete-event-simulation.html

Related Products
In this section...
“Information About Related Products” on page 1-7
“Limitations on Usage with Related Products” on page 1-7

Information About Related Products
See Related Products (https://www.mathworks.com/products/simevents/related.html).

Limitations on Usage with Related Products
Code Generation

SimEvents blocks do not support code generation using the Simulink Coder™ product in version 5.0
(R2016a). Before version 3.1.2 (R2010a), SimEvents blocks offered limited code generation support
for rapid simulation. Since version 4.0 (R2011b), SimEvents blocks do not support code generation
using the Simulink Coder product. Support for rapid simulation was removed because the
improvements in normal model simulation performance for SimEvents models matched or surpassed
the performance of rapid simulation in releases before version 4.0.

Simulation Modes

SimEvents blocks do not support simulation using the Rapid Accelerator, Accelerator, Processor-in-
the-Loop (PIL), or External mode.

Model Reference

SimEvents blocks cannot be in a model that you reference through the Model block.

See Also

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2

More About
• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3

 Related Products

1-7

https://www.mathworks.com/products/availability.html#SE

SimEvents Common Design Patterns
The SimEvents library provides design patterns that you can refer to while modeling. To access these
patterns, open the SimEvents library and double-click the Design Patterns block.

Consider these design patterns while modeling:

Design Pattern Description Input
Specifications

Output
Specifications

Application

Entities with
exponential
random arrival
times

Generates entities
with random
interval time in
exponential
distribution
fashion.

Not applicable Structured entity
with specified
attributes

Model:

• Customers
entering a store

• Incoming phone
calls of a
hotline

Service time from
random
distribution

Specifies waiting
time in the Entity
Server as a
random number
uniformly
distributed from 0
through 1.

Any entity type Inherited from the
input

Model:

• Extension of an
event that is
random within
a range (for
example, length
of a call

• Purposeful
holding of an
entity for a
random time

1 Introduction

1-8

Design Pattern Description Input
Specifications

Output
Specifications

Application

Extract attributes
of entities as
signals

Extracts one or
more attributes of
entities as signals.

A structured entity
or bus object with
specified attribute

getAttribute —
Real double scalar
signal

Extracted Attribute
— Inherited from
the input

Inspect or use a
specific entity
attribute

Timestamp entities
upon generation

Generates entities
with an attribute
TimeStamp that
records the
simulation time
upon generation.

Not applicable Structured entity
with attributes
Data and
TimeStamp

Use when
generation time of
entities is needed,
for example, when
calculating the
priority in a
combined
scheduling
algorithm.

Release entity
upon signal value
change

Releases an
incoming entity
when there is a
jump in the step
function.

Any entity type Inherited from the
input

Use to control the
passing of entities
based on the
change of a
function.

Open gate on
service completion

Upon service
completion, the
gate opens and
releases an entity.

Any entity type Inherited from the
input

Use task
completion to
trigger entity
processing.

Sense an entity
passing from A to
B and open a gate

Passing an entity
from A to B opens
the gate and
releases an entity.

Any entity type Inherited from the
input

Use to model the
passing of an
entity in one route
to control the
passing of another
route.

Select an entity
with a matching
attribute

Select entities to
advance whose
specified attributes
are matching the
anonymous entity
at the control port

A structured entity
or bus object with
a specified
attribute

Inherited from the
input

Select entities with
a specified
attribute to output

Discrete Event
Chart: Single
Server with Pause

A Ctrl message
triggers pause of
service for the
incoming entity. A
second Ctrl
message continues
the service. Entity
data conveys the
service time.

Ctrl — Anonymous
entity specifying
the pause and
resume

Entity —
Anonymous entity
specifying service
time

Inherited from the
input

Use external
events or signals to
pause the service
of entities.

 SimEvents Common Design Patterns

1-9

Design Pattern Description Input
Specifications

Output
Specifications

Application

Discrete Event
Chart: Single
Server with
Timeout

If the service time
(which is random)
exceeds the
timeout limit
specified by the
entity data, the
entity leaves the
server.

Anonymous entity
with specified
timeout limit

Inherited from the
input

Model:

• A protocol that
explicitly calls
for timeouts.

• Implementation
of special
routing or other
handling of
entities that
exceed a time
limit.

• Entities that
represent
perishable
items.

Discrete Event
Chart: Custom
Output Switch

Randomly routes
entities to one of
the three output
ports.

Anonymous entity Inherited from the
input

Implement a more
complicated
routing algorithm
for an output
switch.

MATLAB Discrete
Event System:
Custom Generator

The Custom
Generator block,
defined using the
MATLAB Discrete
Event System
block, is a basic
entity generator.
The generator
block requires
specification of
generation period.

Not applicable Anonymous entity Implement a more
complicated entity
generator.

MATLAB Discrete
Event System:
Custom Server

Custom Server
block, defined
using the MATLAB
Discrete Event
System block, is a
basic entity server.
The server block
requires
specification of
server number and
service time.

Any entity type Inherited from the
input

Implement a more
complicated entity
server.

1 Introduction

1-10

Design Pattern Description Input
Specifications

Output
Specifications

Application

MATLAB Discrete
Event System:
Selection Queue

The Selection
Queue block,
defined using the
MATLAB Discrete
Event System
block, stores
entities of bus type
passenger
arriving at the IN
port. Keys from the
call port select
passenger
entities with the
matching
trainNum field
and send them to
the OUT port.

Key — Anonymous
entity carrying the
selection key

IN — A structured
entity or bus object
with specified
attribute

Inherit from IN Select a specific
entity to output
from a queue.

See Also
Discrete Event Chart | MATLAB Discrete Event System

More About
• “Block Authoring”
• “Discrete-Event System Objects”
• “Implement Discrete-Event Systems with Charts”

 SimEvents Common Design Patterns

1-11

Bibliography
[1] Banks, Jerry, John Carlson, and Barry Nelson. Discrete-Event System Simulation, Second Ed.

Upper Saddle River, N.J.: Prentice-Hall, 1996.

[2] Cassandras, Christos G. Discrete Event Systems: Modeling and Performance Analysis. Homewood,
Illinois: Irwin and Aksen Associates, 1993.

[3] Cassandras, Christos G., and Stéphane Lafortune. Introduction to Discrete Event Systems. Boston:
Kluwer Academic Publishers, 1999.

[4] Fishman, George S. Discrete-Event Simulation: Modeling, Programming, and Analysis. New York:
Springer-Verlag, 2001.

[5] Gordon, Geoffery. System Simulation, Second Ed. Englewood Cliffs, N.J.: Prentice-Hall, 1978.

[6] Kleinrock, Leonard. Queueing Systems, Volume I: Theory. New York: Wiley, 1975.

[7] Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis, 3rd Ed. New York:
McGraw-Hill, 1999.

[8] Moler, C. “Floating points: IEEE Standard unifies arithmetic model,” Cleve's Corner. The
MathWorks, Inc., 1996. https://www.mathworks.com/company/newsletters/news_notes/pdf/
Fall96Cleve.pdf.

[9] Watkins, Kevin. Discrete Event Simulation in C. London: McGraw-Hill, 1993.

[10] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Second Ed. San
Diego: Academic Press, 2000.

1 Introduction

1-12

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

Build Simple Models with SimEvents
Software

• “Create a Discrete-Event Model” on page 2-2
• “Explore Statistics and Visualize Simulation Results” on page 2-6
• “Manage Entities Using Event Actions” on page 2-13
• “Trigger Simulink Components with Discrete Events in SimEvents” on page 2-17

2

Create a Discrete-Event Model
In this section...
“Add SimEvents Blocks to a Model” on page 2-2
“Configure Blocks” on page 2-3
“A Simple Queuing System” on page 2-3
“Results of the Simulation” on page 2-4

This example describes how to build a new SimEvents model representing a discrete-event system.
For more information about discrete-event systems, see “Discrete-Event Simulation in Simulink
Models” on page 1-3. The example features a simple queuing system in which trucks arrive at a gas
station to fill up their tanks. The tank of a truck is represented by an entity that arrives at a fixed
deterministic rate, waits in a queue, and advances to a server that fills the tanks and also operates at
a fixed deterministic rate. This type of system is known as a D/D/1 queuing system in queuing
notation. The notation indicates the deterministic arrival rate, the deterministic service rate, and a
single server.

The example shows how to perform basic model-building tasks in SimEvents— adding blocks to
models and configuring blocks.

To open the model directly without performing the steps, see “A Simple Queuing System” on page 2-
3.

Add SimEvents Blocks to a Model
1 Open a new model window.

On the Home tab, select New > Simulink Model and select Blank Model. Save the model in
your working folder as dd1.

2 Open the SimEvents library.

In the MATLAB Command Window, enter

simevents

The main SimEvents library window appears with the blocks it contains.
3 Add blocks to the model.

From the SimEvents library, drag these blocks to the model.

• Entity Generator — Generates entities to model the arrival of tanks.
• Entity Queue — Stores entities in a queue to model the queuing of tanks waiting to be filled.
• Entity Server — Serves entities to model the tank filling process.
• Entity Terminator — Terminates entities to model the tanks' departure from the station.

In the model window, double-click and type the name of the Scope block. Press Enter to add it.

The added blocks represent the key processes in the simulation: generating entities, storing
entities in a queue, serving entities, and creating a plot that shows relevant data.

2 Build Simple Models with SimEvents Software

2-2

Configure Blocks
Each block in a model, in this case, dd1, has a dialog box that enables you to specify block
parameters. Default parameter values might or might not fit your case, depending on your modeling
needs.

Two important parameters in the D/D/1 queuing system are the arrival rate and service rate. The
reciprocals of these rates are the duration between successive entities and the duration of service for
each entity. To examine these durations:

1 Double-click the Entity Generator block. Observe that the Period parameter is set to 1. This
means that the block generates a new entity every second. A tank arrives at the station every
second.

2 Double-click the Entity Server block. Observe that the Service time parameter is set to 1.0.
This means that the server spends one-second processing each entity that arrives at the block.
Each tank is filled for one second duration.

The Period and Service time parameters have the same value, which means that the server
completes servicing the entity at the same time that a new entity is being created.

3 Click Cancel in both dialog boxes to close them without changing any parameters.
4 Double-click the Entity Server block. Click the Statistics tab to view parameters related to the

statistical reporting of the block. Select Number of entities departed, d. Click OK.

The Entity Server block acquires a signal output port labeled d. During the simulation, the block
produces an output signal at this d port. The value of the signal is the running count of entities
that have completed their service and departed from the server.

5 Connect the Scope block to the Number of entities departed, d and display the statistics
(running count of entities).

6 Double-click the Entity Queue block. Set the Capacity parameter to Inf to create a queue with
infinite capacity and click OK.

7 Connect the blocks as shown and save the dd1 model you have created. The entity path lengths
do not affect the simulation.

SimEvents connects the source block to the destination block. If necessary, the software also
routes the connecting line around intervening blocks or lines.

8 Simulate the model.

A Simple Queuing System
Open the example to investigate a simple queuing system that generates, queues, services, and
terminates entities.

 Create a Discrete-Event Model

2-3

Results of the Simulation
When the simulation runs, the Simulink Scope block opens a window containing a plot. The horizontal
axis represents the times at which entities depart from the server, while the vertical axis represents
the total number of entities that have departed from the server.

After an entity departs from the Entity Server block, the block updates its output signal at the d port.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Explore Statistics and Visualize Simulation Results” on page 2-6

2 Build Simple Models with SimEvents Software

2-4

• “Manage Entities Using Event Actions” on page 2-13
• “Model Basic Queuing Systems”
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2

More About
• “Entities in a SimEvents Model” on page 3-2

 Create a Discrete-Event Model

2-5

Explore Statistics and Visualize Simulation Results
The main purpose of creating a discrete-event simulation is to understand the underlying system or
inform decisions about the underlying system.

Statistical data gathered during simulation can be important for interpreting the behavior of a model.
For example:

• If you simulate the operation and maintenance of equipment on an assembly line, you can use the
computed production and defect rates to help decide whether to change your maintenance
schedule.

• If you simulate a communication bus under varying bus loads, you might use computed average
delays in high- or low-priority messages to help determine whether a proposed architecture is
viable.

The number of entities departing a block, the average wait time of entities, utilization, and the
average number of entities being served in an Entity Server block are a subset of statistics you would
want to visualize.

Many SimEvents blocks have a Statistics tab, from which you can select the relevant data.

This procedure shows you how to access a statistical output signal for a given SimEvents block.

1 Determine which statistical output signal you want to access and find the associated parameter
in the block dialog box. To see which statistics are available, open the block dialog box. The list of
available statistics appears as a list of parameters on the Statistics tab of the dialog box.

2 Select the check box. After you apply the change, the block has a new signal output port
corresponding to that statistic.

For example, the Entity Queue block can display:

• Number of entities departed, d
• Number of entities in the block, n
• Average wait time of the entities, w
• Average queue length of entities, l

2 Build Simple Models with SimEvents Software

2-6

3 To display the statistics, connect those signal output ports to a Simulink Scope block.

Note Use scopes and other observer blocks to observe individual statistic ports. However, you
cannot use the same scope to observe multiple statistics ports nor use a Scope Viewer for a
statistics port. To observe multiple statistic ports, consider using a dashboard or the Simulation
Data Inspector.

See “Visualization and Animation for Debugging” for a table showing all the visualization tools.

You can use the built-in statistical signals from SimEvents blocks to derive more specialized or
complex statistics. One approach is to use a Simulink Function block, and another approach is to
compute statistics using MATLAB code after the simulation is complete. For more information about
using statistics for run-time control, see “Interpret SimEvents Models Using Statistical Analysis”. For
an example to save statistics data to workspace, see “Optimize SimEvents Models by Running
Multiple Simulations”.

Explore a D/D/1 System Using Plots
This example shows how to modify a simple queuing system and plot statistical quantities to interpret
its behavior. In the example, a dd1 queuing model, which represents the tank filling process of the
vehicles arriving at a gas station, is used to view the statistics for entity waiting time and server
utilization. For more information about the dd1 queuing model, see “Create a Discrete-Event Model”
on page 2-2.

To open the model directly without performing the configuration steps, see “Visualize and Explore
Simulation Results” on page 2-8.

View Statistics for Waiting Times and Utilization

The queue length is an example of a statistic that quantifies a state at a particular instant. Other
statistics, such as average waiting time and server utilization, summarize behavior between
simtime=0 and the current time. Take these steps to modify the model so that you can view the
average waiting time of entities in the queue and server, and the proportion of time that the server
spends storing an entity.

 Explore Statistics and Visualize Simulation Results

2-7

1 Double-click the Entity Queue block. Set Capacity to Inf. Click the Statistics tab, set Average
wait to On, and click OK.

An output port, w, representing the average duration that entities wait in a queue
appears.Connect the statistic to a scope block and rename it to Average Wait Queue.

2 Double-click the Entity Server block. Click the Statistics tab, set both the Average wait and
Utilization parameters to On, and click OK.

Two output ports, w and util appear. w represents the average duration that entities wait in the
server. util represents the proportion of time that the server spends storing an entity.

3 Add two Scope blocks. Rename all the Scope blocks with descriptive names, for example,
Utilization, Number of entities departed, Average Wait Server.

4 Connect the util signal output port and the two w signal output ports to the in signal input ports
of the unconnected scope blocks. Save the model.

5 Simulate the model with different values of the Period parameter for the entity intergeneration
times in the Entity Generator block. Observe the plots to see how they change if you set the
intergeneration time to 0.3, 1.1, or 1.5, for example.

Note Scope blocks do not support bus objects. SimEvents software supports Scope blocks with only
single inputs.

Visualize and Explore Simulation Results

Open the example to explore simulation results.

Observations from Plots

• For intergeneration time 0.3 or 1.1, the average wait time w in the Server block does not change
after the first departure from the block because the service time is fixed for all departed entities.
The average waiting time statistic does not include partial wait times for entities that are in the
server but have not yet departed.

2 Build Simple Models with SimEvents Software

2-8

• For intergeneration time 0.3, the utilization of the server util is nondecreasing because the
server is constantly busy once it receives the first entity.

 Explore Statistics and Visualize Simulation Results

2-9

• For intergeneration time 1.5, which is larger than the service time (1), the utilization may
decrease because the server has idle periods between entities.

• For intergeneration time 0.3, the average waiting time w in the queue increases throughout the
simulation because the queue gets longer and longer.

2 Build Simple Models with SimEvents Software

2-10

• For intergeneration time 1.1, which is larger than the service time (1), the average waiting time
w in the queue is zero because every entity that arrives at the queue is able to depart immediately.

 Explore Statistics and Visualize Simulation Results

2-11

See Also
Entity Server | Entity Terminator | Entity Generator | Entity Queue

Related Examples
• “Manage Entities Using Event Actions” on page 2-13
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2
• “Interpret SimEvents Models Using Statistical Analysis”

2 Build Simple Models with SimEvents Software

2-12

Manage Entities Using Event Actions
This example shows how to control entity generation rate and write event actions to change entity
attributes in a simple queuing system. In a discrete-event simulation, an event is an observation of an
instantaneous incident that may change a state variable, an output, or the occurrence of other events.
SimEvents allows you to create custom actions when an event occurs. These actions are called event
actions. Events can have corresponding actions. You can write event actions to change entity
attributes by using MATLAB code or Simulink functions.

Start with a Simple Queuing System
This is a simple queueing system with Entity Generator, Entity Queue, Entity Server, and Entity
Terminator blocks. In this example, an entity represents a tank of a truck that arrives at a gas station.
The attribute of an entity represents the current gas level in a tank. Event actions represent the
changes of the gas level in a tank. Tanks are randomly generated, queued, and they are serviced with
a pump which transfers a constant amount of gas for one second. Tanks depart from the station with
their new total gas amount.

Modify the Model
1 Select the whole model or the entity paths originating from the Entity Generator, Entity Queue,

and Entity Server blocks and right-click to select Log Selected Signals. Simulation Data
Inspector is used to visualize the flow of tanks and their gas level in the model. For more
information, see “Inspect Simulation Data”.

2 Rename the Entity Generator block as Tank Generator, the Entity Queue block as Waiting Queue,
the Entity Server block as Pump, and the Entity Terminator block as Exit.

3 Rename the path originating from the Tank Generator block as Tank to Queue, the Waiting Queue
block as Tank to Pump, and the Pump block as Tank to Exit.

Configure and Simulate Model
1 Double-click the Tank Generator, and select the Entity type tab. Change the Entity type name

to Tank, and the Attribute Name to CurrentGasLevel.

The entity attribute CurrentGasLevel represents the existing amount of gas in each tank.
2 Simulate the model. Open the Simulation Data Inspector. Observe that the tanks approach the

Waiting Queue, the Pump, and the Exit with the same rate.

Tanks leave the station with their initial gas amount 1 which is the Attribute Initial Value.

 Manage Entities Using Event Actions

2-13

3 Open the Tank Generator block parameters dialog box. In the Entity generation tab, set Time
source to Matlab action. Observe the default MATLAB code.

dt = rand(1,1);

The code randomizes the entity intergeneration time parameter dt to represent random tank
arrivals.

4 Simulate the updated model. In the Simulation Data Inspector, observe that tanks arrive
randomly with the same initial gas amount 1.

2 Build Simple Models with SimEvents Software

2-14

Observe that the tanks are generated randomly but they approach the pump with a regulated
fixed rate because service time for the Pump is 1.

5 Open the Tank Generator block dialog box. In the Event actions tab, in the Generate action
field, enter the code.

entity.CurrentGasLevel = randi([1,4]);

Tanks arrive at the station with a random gas amount that ranges from 1 to 4.
6 Simulate the updated model. In the Simulation Data Inspector, observe that the tanks arrive

with random amounts of gas.

7 For the Pump block, set these parameters:

a In the Event actions tab, select Service complete.
b For the Service complete action field, enter the code.

entity.CurrentGasLevel = entity.CurrentGasLevel + 3;

Each tank is filled with 3 units of gas for 1s duration, and then it departs the pump.

Observe that the Tank Generator and the Pump blocks update with the event action icon {...}
indicating that the blocks define an event action.

8 Simulate the updated model. In the Simulation Data Inspector, observe that each tank leaves
the station with 3 additional units of gas.

 Manage Entities Using Event Actions

2-15

Modified Model to Manage Entities in a Queueing System
This is the modified model after configuring the simple queueing system.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2
• “Create a Discrete-Event Model” on page 2-2
• “Explore Statistics and Visualize Simulation Results” on page 2-6

2 Build Simple Models with SimEvents Software

2-16

Trigger Simulink Components with Discrete Events in
SimEvents

This example shows how to use Simulink Function blocks to timestamp entities, pass entity attributes
to Simulink® components, and create notification events for routing. You can Use Simulink Function
blocks to grab entity attributes pass them to Simulink® components for processing and then pass
them back to your SimEvents® model.

This is a simple discrete-event queueing system constructed by using Entity Generator, Entity Queue,
Entity Server, and Entity Terminator blocks. To learn how to construct this model, see “Create a
Discrete-Event Model” on page 2-2.

In this example, we use this simple SimEvents® model and Simulink Function blocks to show how to:

• Timestamp entities and measure the time between an entity's generation and service completion.
You can use this workflow to track how much time is required to processes entities in a queueing
system.

• Extract entity attributes and use the attribute values in a Simulink component. You can use this
workflow to pass entity attributes to a Simulink® algorithm.

• Import data from a spreadsheet to a SimEvents® model and specify entity generation intervals.
You can use this workflow to set block and entity parameters from existing data.

• Extract entity attributes and pass them to another entity with different type.

Timestamp Entities Using a Simulink Function Block

This model shows how to track time for entities flowing through your system. A Simulink Function
block is used to timestamp entity generation and service times and to compute the total duration
between these two processes.

 Trigger Simulink Components with Discrete Events in SimEvents

2-17

To open the model, use this code:

open_system('TimeStampEntitiesUsingSimulinkFunctionModel');

In this model, the entity intergeneration intervals are generated from a uniform distribution on the
open interval (0,1). The entities have four attributes and all attributes have an initial value of 0:

2 Build Simple Models with SimEvents Software

2-18

• Data represents the data the entities carry.

• TimeStampGeneration stores entity generation time.

• TimeStampServiceComplete stores entity service completion time.

• TotalTime is the time between an entity's generation and service.

In the Simulink Function block, the Digital Clock block timestamps the entity generation time.

You can timestamp when the entity is generated by calling the timeStamp() function in the Simulink
Function from the Entity Generator block.

 Trigger Simulink Components with Discrete Events in SimEvents

2-19

To call the function, in the Entity Generator block, in the Event actions tab, in the Generate field,
use this code:

entity.TimeStampGeneration = timeStamp();

The code calls the timeStamp() function and assigns the value from the Digital Clock block to the
TimeStampGeneration attribute when the entity is generated.

Similarly, to timestamp service completion and calculate the time difference between entity
generation and service, open the Entity Server block, and in the Event actions tab, click the Service
complete. Enter this code.

% Stamp the service completion by calling the |timeStamp()|
% function.
entity.TimeStampServiceComplete = timeStamp();
% Calculate the difference between generation and service
% completion time.
entity.TotalTime = entity.TimeStampServiceComplete - entity.TimeStampGeneration;
% Display the entity attribute for the time difference.
disp(entity.TotalTime);

The service completion time, which is acquired by calling timeStamp(), is assigned to the
entity.TimeStampServiceComplete attribute. Then the duration between the entity's generation
and service completion is calculated and assigned to entity.TotalTime. The code displays
entity.TotalTime values for each entity in the Diagnostic Viewer.

Simulate the model. In the Diagnostic Viewer, you can observe the entity.TotalTime values for 10
entities. The duration between entity generation and service increases because entities wait in the
Entity Queue block for their turn of service.

2 Build Simple Models with SimEvents Software

2-20

Increase the simulation time to 1000 and observe that entity.TotalTime converges to
approximately 26.

Pass TotalTime Attribute to a Simulink Component

Suppose that you want to pass entity.TotalTime values to a Simulink® component. This model
shows how to pass the attribute value to a Simulink Function block when an entity arrives at the
Entity Terminator block.

To open this model, use this code:

open_system('GetEntityAttributesSimulinkFunctionModel');

To achieve this behavior, open the Entity Terminator block, in the Event actions tab, click Entry and
call the getAttribute(entity.TotalTime) function.

The Get Entity Attributes block takes entity.Totaltime as the input argument and uses a Gain
block to amplify its values by multiplying them by 2.

 Trigger Simulink Components with Discrete Events in SimEvents

2-21

Simulate the model. Observe the Scope block that shows the amplified attribute values.

Import Data from a Spreadsheet to Specify Entity Intergeneration Times

Suppose that you want to incorporate data from a spreadsheet to your simulation. Using a
spreadsheet, you can specify various parameters in your model, such as entity intergeneration time,
entity attributes, or service time.

This example model shows how to import data from a spreadsheet to a SimEvents® model and use
data to specify entity intergeneration times.

2 Build Simple Models with SimEvents Software

2-22

To open this model, use this code:

open_system('ImportDataSimEventsModel');

In the model, a From Spreadsheet block is inside the Simulink Function block and acquires values
from the interGenerationTimes.xlsx spreadsheet. The spreadsheet has five values — 1, 2, 3, 4,
and 5 — to be used as entity intergeneration times.

To call the myDataSpreadsheet() function, in the Entity Generator block, in the Intergeneration
time action field, use this code:

dt = myDataSpreadsheet();

dt is the variable that specifies the intergeneration times for entities. The code assigns dt values by
calling the Simulink function myDataSpreadsheet(), which acquires values from the spreadsheet.

Simulate the model. Observe the Scope block that displays when entities are generated and depart
the block. The intervals between entity generation are the same as the data from the spreadsheet.

 Trigger Simulink Components with Discrete Events in SimEvents

2-23

Pass Entity Attributes Between Different Entity Types

In SimEvents, you can create a model that has different entity types and pass the attributes between
entities using a Simulink Function block.

2 Build Simple Models with SimEvents Software

2-24

To open this model, use this code:

open_system('AssignEntityAttributeSimulinkFunctionModel');

In the model, two Entity Generator blocks generate entities. Entity 1 generates entities with a
constant value of 2 and are serviced for 1 simulation time. After the service is complete, the entities
arrive at the Simulink Function block labeled Assign Attribute 1.

In Assign Attribute 1, entities are received by a Receive block with an internal queue of size 16. The
Receive block converts the entity data to signal values.

Similarly, Entity 2 generates entities that carry data of value 2 and are serviced for 5 simulation time.
After the service is complete, entities arrive at Assign Attribute 2.

 Trigger Simulink Components with Discrete Events in SimEvents

2-25

The entity data is passed to another Entity Generator block labeled New Entity. The New Entity block
generates entities carrying two attributes, data1 and data2, whose values are acquired by calling
setAttribute1() and setAttribute2(), respectively.

entity.data1 = setAttribute1();
entity.data2 = setAttribute2();

Simulate the model and open the Data Inspector. Observe that the values of data1 and data2 values
of the new entity are 0 until simulation time 2. This is because entities are serviced and there is no
attribute pass between the entities. At time 2, data1 is 2, which is the value that is passed by
setAttribute1(). At time 6, data2 starts to acquire values from setAttribute2(). This delay is
due to the difference between the service times of the entities.

Create a Notification Event for Routing

This model shows how to use a Simulink Function block to create an event to notify a routing block
when an entity's processing is complete.

2 Build Simple Models with SimEvents Software

2-26

To open this model, use this code:

open_system('NotifyEventSimulinkFunctionCallModel');

In the model, an Entity Generator block generates entities that represent parts in a facility. The
entities are then processed by an Entity Server block. If a part passes quality control, the Entity
Output Switch block routes the parts to Departure. Otherwise, the parts are sent to Further
Processing.

To create a notification event after an entity is processed, in the Entity Server block, in the Event
actions tab, in the Service complete action field, call the notifyEvent() function.

In the Quality Control block, a Sine Wave block is used to generate a signal. A Round block is used to
round the signal values to the nearest integer less than or equal to that value. The output signal from
the Round block takes the value 1 or 2. The signal is converted to a message by the Set Event Time
block.

The message data value from the Quality Control block specifies which output port is selected when
entities depart the Entity Output Switch block. If the message carries value 1, output port 1 is
selected for entity departure. If the message carries value 2, output 2 is selected for entity departure.

Simulate the model and observe the Scope block labeled Parts Departed. Four parts depart the
facility.

 Trigger Simulink Components with Discrete Events in SimEvents

2-27

Observe the Scope block labeled Parts Sent to Processing, which shows that six parts are sent to
further processing.

2 Build Simple Models with SimEvents Software

2-28

See Also
Gain | Bias | Simulink Function | Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Manage Entities Using Event Actions” on page 2-13
• “Create a Hybrid Model with Time-Based and Event-Based Components” on page 5-2
• “Create a Discrete-Event Model” on page 2-2
• “Explore Statistics and Visualize Simulation Results” on page 2-6

 Trigger Simulink Components with Discrete Events in SimEvents

2-29

Key Concepts in SimEvents Software

• “Entities in a SimEvents Model” on page 3-2
• “Role of Entity Ports and Paths” on page 3-9
• “Overview of Queues and Servers in Discrete-Event Simulation” on page 3-12

3

Entities in a SimEvents Model
In this section...
“Meaning of Entities in Different Applications” on page 3-2
“Vary the Interpretation of Entities” on page 3-2
“Visualize Entities” on page 3-3
“Storing Entities” on page 3-3
“Entity Types” on page 3-3
“Data and Role of Entity Attributes” on page 3-4
“Create Entities in a SimEvents Model” on page 3-4

Entities are discrete items of interest in a discrete-event simulation. By definition, these items are
called entities in SimEvents software. Entities can pass through a network of queues, servers, gates,
and switches during a simulation. Entities can carry data, known in SimEvents software as attributes.

SimEvents models typically contain at least one source block that generates entities. Other
SimEvents blocks in the model process the entities that the source block generates.

Note Entities are not the same as events. Events are instantaneous discrete incidents that change a
state variable, an output, and/or the occurrence of other events. See “Events and Event Actions” for
details.

Meaning of Entities in Different Applications
You determine what an entity signifies, based on what you are modeling. The table lists example
entity representations in various applications.

Context of Sample Application Entities
Airport with a queue for runway access Airplanes waiting for access to runway
Communication network Packets, frames, or messages to transmit
Bank of elevators People traveling in elevators
Conveyor belt for assembling parts Parts to assemble
Computer operating system Computational tasks or jobs

Vary the Interpretation of Entities
A single model can use entities to represent different kinds of items. For example, if you are modeling
a factory that processes two different kinds of parts, you can:

• Use two Entity Generator blocks to create the two kinds of parts.
• Use one Entity Generator block and subsequently assign an attribute to indicate what kind of part

each entity represents and another attribute to represent a property.

Note SimEvents entities are fundamentally the same as Simulink and Stateflow messages.

3 Key Concepts in SimEvents Software

3-2

Visualize Entities
Entities do not appear explicitly in the model window. A graphical block can represent a component
that processes entities, but entities themselves do not have a graphical representation. However, you
can gather information about entities using Simulink scopes. You cannot branch an entity connection
line. If your application requires an entity to arrive at multiple blocks, use Entity Replicator block to
create copies of entities.

Storing Entities
These blocks are capable of holding an entity:

• Entity Generator
• Entity Queue
• Multicast Receive Queue
• Entity Server
• Entity Terminator
• Discrete Event Chart
• MATLAB Discrete Event System
• Entity Replicator
• Resource Acquirer
• Resource Releaser

These blocks permit an entity arrival but must output or destroy the entity at the same value of the
simulation clock:

• Entity Input Switch
• Entity Output Switch
• Entity Multicast
• Entity Gate
• Composite Entity Creator
• Composite Entity Splitter
• Resource Pool

Entity Types
An entity type is the identification tag associated with any block that creates entities in your model.
For the Entity Generator block, you assign a name to the entity type on the Entity type tab of the
generation block. From this block, each new entity receives this tag. For example, the name of the
entity type associated with an Entity Generator in your model might be Customer. Each entity that
originates in that block receives this entity type. A Composite Entity Creator block also generates
new entities by combining two or more existing entities to form a new composite entity. You can
assign a new entity type name to the entity type (named Combined by default).

Note The Entity Replicator block also generates new entities by outputting copies of an incoming
entity. However, because the incoming entity already possesses an entity type, the block does not
create new entity types for the copies.

 Entities in a SimEvents Model

3-3

As an entity progresses through your model, its type does not change. Even if the entity acquires
attribute, timeout, or timer data that give it a more complex structure, the entity type remains the
same. Although a Composite Entity Creator block forms new composite entities with a new entity
type, the underlying entity types remain the same.

By default, each new entity type that SimEvents creates in your model uses the name Entity.

The Entity Generator block can generate these entity types:

• Anonymous — Unstructured entity with no name. You can specify only entity priority and initial
data value for anonymous entity types.

• Structured — Structured entity type that you define in this block dialog box. You can name
entities, specify priorities, and specify attributes for the entity in the Define attributes section of
the Entity Generator block. Attributes are data carried by entities. Creating a structured entity in
this tab is a convenient way to create an entity without having to create an associated bus object
in Simulink.

• Bus object — Entity type that you define using Simulink bus objects. You can name entities,
specify priorities, and specify attributes for the entity. To specify this entity type, you must have an
existing bus object, created in Simulink, and use that bus object name as the name of the entity
type. This bus object:

• Must be a valid bus object with one or more bus elements at a single level.
• Cannot contain variable-size elements. This limitation is also true for entities registered as bus

objects through the Composite Entity Creator block.

Data and Role of Entity Attributes
You can optionally attach data to entities. Such data is stored in one or more attributes of an entity.
You define names and numeric values for attributes. For example, if your entities represent a message
that you are transmitting across a communication network, you might assign data called length that
indicates the length of each particular message. You can read or change the values of attributes
during the simulation.

Entities and attributes can be of any data type that Simulink supports, including enumerated types.
For more information, see “Data Types Supported by Simulink”.

Data types supported by MATLAB but not supported by Simulink may not be passed between the
Simulink model and event actions. You can use these data types in event actions as local variables.

You can optionally specify the structure of an entity using a Simulink bus object. This capability is
useful when defining complex entity structures that need to be defined once, but used in multiple
locations in a model. In addition, the MATLAB Discrete-Event System and Discrete Event Chart
blocks require that you specify entities as bus objects. For more information on bus objects, see
“Specify Bus Properties with Simulink.Bus Object Data Types”.

Create Entities in a SimEvents Model
An Entity Generator block can be used to generate entities. By default, the block creates time-based
entities. You can change the Time Source parameter to select the time source for the entity
generation. You can create time-based entities using:

3 Key Concepts in SimEvents Software

3-4

• The Period parameter value. For more information, see “Create Time-Based Entities” on page 3-
5.

• A signal port. You can then connect a Simulink source block, such as a Repeating Sequence block,
to the signal port. The time value cannot be a negative number. For more information, see
“Specify Intergeneration Times for Entities”.

• MATLAB code. For more information, see “Create Randomized Entities” on page 3-6.

Create Time-Based Entities

Use the Entity Generation block to create time-based entities. The Entity Generation lets you specify
a period at which it creates entities.

1 Open the SimEvents block library. You can use the Simulink browser or type simevents at the
MATLAB Command Window.

2 Create a new model.
3 From the SimEvents library, drag the Entity Generator block to the new model.
4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue.
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the Scope block
to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model. Connect the
output of the Entity Queue block to the input of the Entity Terminator block.

Upon simulation, the scope displays the entities that depart the queue.

 Entities in a SimEvents Model

3-5

Note You cannot connect a scope to a SimEvents line, as denoted by the thick double arrow line.

Create Randomized Entities

Use the Entity Generation block to create time-based entities. The Entity Generation lets you specify
a randomization operation (such as the MATLAB rand function) to create entities at random times.

1 Open the SimEvents block library. You can use the Simulink browser or type simevents at the
MATLAB Command Window.

2 Create a model.
3 From the SimEvents library, drag the Entity Generator block to the new model.

a Double-click the block and set the Time source parameter to MATLAB action.
b In the Intergeneration time action parameter, enter a call to a randomizer function, such

as rand. For example:

dt = rand(1,1);

3 Key Concepts in SimEvents Software

3-6

4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the Scope block
to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model. Connect the
output of the Entity Queue block to the input of the Entity Terminator block.

Upon simulation, the scope displays the entities that depart the queue.

 Entities in a SimEvents Model

3-7

See Also
Composite Entity Creator | Entity Gate | Entity Generator | Entity Input Switch | Entity Multicast |
Entity Output Switch | Entity Queue | Entity Server | Entity Terminator | Resource Acquirer

Related Examples
• “Generate Entities When Events Occur”
• “Specify Intergeneration Times for Entities”
• “Working with Entity Attributes and Entity Priorities”
• “Inspect Structures of Entities”

3 Key Concepts in SimEvents Software

3-8

Role of Entity Ports and Paths

In this section...
“Entity Ports and Paths” on page 3-9
“Definition of Entity Paths” on page 3-9
“Implications of Entity Paths” on page 3-10
“Designing Paths Using Input, Output, and Entity Combiner Blocks” on page 3-10

Entity Ports and Paths
An entity output port provides a way for an entity to depart from a block. Conversely, an entity input
port provides a way for an entity to arrive at a block.

A connection line indicates a path along which an entity can potentially advance. However, the
connection line does not imply that any entities actually advance along that path during a simulation.
For a given entity path and a given time instant during the simulation, any of the following could be
true:

• No entity is trying to advance along that path.
• An entity has tried and failed to advance along that path. For some blocks, it is normal for an

entity input port to be unavailable under certain conditions. As a result, the entity fails in its
attempt to advance along that path, even though the path is intact (that is, even though the ports
are connected). An entity that tries and fails to advance is called a pending entity.

• One or more entities successfully advance along that path. This occurs only at a discrete set of
times during a simulation.

Note The simulation could also have one or more times at which one or more entities successfully
advance along a given entity path. Simultaneously, one or more different entities try and fail to
advance along that same entity path. For example, an entity departs from a queue and,
simultaneously, the next entity in the queue tries and fails to depart.

Definition of Entity Paths
An entity path is a connection from an entity output port to an entity input port, depicted as a line
connecting the entity ports of two SimEvents blocks. An entity path represents the equivalence
between an entity's departure from the first block and arrival at the second block. For example, in the
model shown below, any entity that departs from the Entity Queue block's output port equivalently
arrives at the Entity Server block's input port.

 Role of Entity Ports and Paths

3-9

The existence of the entity path does not guarantee that any entity actually uses the path. For
example, the simulation could be so short that no entities are ever generated. Even when an entity
path is used, it is used only at a discrete set of times during the simulation.

Implications of Entity Paths
In some models, you can use the entity connection lines to infer the full sequence of blocks at which a
given entity arrives, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not completely
determine the sequence of blocks at which each entity arrives. This example shows two queues in a
parallel arrangement, preceded by a block that has one entity input port and two entity output ports.

By looking at the entity connection lines alone, you cannot tell which queue block's IN port an entity
arrives at. Instead, you need to know more about how the one-to-two block (Output Switch) behaves
and understand the outcome of certain run-time decisions.

Designing Paths Using Input, Output, and Entity Combiner Blocks
You design entity paths by choosing or combining entity paths using the Entity Input Switch, Entity
Output Switch, and Entity Combiner blocks of the SimEvents library. These blocks have extra entity
ports that let you vary the model's topology (that is, the set of blocks and connection lines).

Typical reasons for manipulating entity paths are:

• To describe an inherently parallel behavior in the situation you are modeling — for example, a
computer cluster with two computers that share the computing load. You can use the Entity
Output Switch block to send computing jobs to one of the two computers. You might also use the
Entity Input Switch block if computing jobs share a common destination following the pair of
computers.

• To design nonlinear topologies, such as feedback loops — repeating an operation if quality criteria
such as quality of service (QoS) are not met. You can use the Entity Input Switch block with the
Active port selection parameter set to All to combine the paths of new entities and entities that
require a repeated operation.

• To incorporate logical decision-making into your simulation — for example, to determine
scheduling protocols. You might use the Entity Input Switch block to determine which of several
queues receive attention from a server.

• To incorporate logic for activation or deactivation of an entity path, use the Entity Gate block. For
example, you can activate an entity path for one entity when a condition is fulfilled in your model.

• To model routing of copies of an entity to multiple remote locations in the model, consider using
the Entity Multicast and Multicast Receive Queue blocks.

3 Key Concepts in SimEvents Software

3-10

Other libraries in the SimEvents library set contain a number of blocks whose secondary features,
such as preemption from a server or timeout from a queue or server, give you opportunities to design
paths.

See Also
Entity Input Switch | Entity Output Switch

Related Examples
• “Control Output Switch with Event Actions and Simulink Function”

More About
• “Role of Entity Ports and Paths” on page 3-9
• “Role of Gates in SimEvents Models”

 Role of Entity Ports and Paths

3-11

Overview of Queues and Servers in Discrete-Event Simulation
In this section...
“ Storage with Queues” on page 3-12
“Storage with Servers” on page 3-13
“Use Events and Event Actions in Queuing Systems” on page 3-14
“Serial Queue-Server Pairs” on page 3-14
“Parallel Queue-Server Pairs as Alternatives” on page 3-15
“Author Custom Storage Blocks Using MATLAB Discrete-Event System Block and Discrete-Event
Chart” on page 3-15

In a SimEvents model, the Entity Queue and the Entity Server blocks are storage blocks that hold
entities.

• Queues order entities and sort them according to queue policies.
• Servers delay entities until certain conditions are met.

This example model represents a simple queuing system that generates entities, and queues them in
a specified order, services them to change their attributes, and terminates them to represent their
departure from the line. To learn more about basic queuing systems, see “Model Basic Queuing
Systems”.

Storage with Queues
In a discrete-event simulation, an Entity Queue block stores entities for a length of time that cannot
be determined in advance. The queue attempts to output entities when possible, but its output
depends on whether the downstream block accepts new entities.

An everyday example of a queue is people waiting in line for a store register. A shopper cannot
determine in advance how long they must wait to complete their purchase.

For example, a queue can represent the behavior of:

• Airplanes waiting to access a runway
• Messages waiting to be sent
• Parts waiting to be assembled in a factory
• Computer programs waiting to be executed
• Cars waiting in line in a gas station

To define the behavior of a queue, specify:

3 Key Concepts in SimEvents Software

3-12

• Capacity — The number of entities a queue can store simultaneously.
• Queue Sorting Policy — Specifies which entity departs first such as first-in-first-out (FIFO), last-in-
first-out (LIFO), or custom priority, if the queue stores multiple entities.

• Overwriting policy — Determines behavior when the queue is full. You can choose to block a new
incoming entity or accept it to overwrite the oldest entity in the queue.

For more information about queue behavior, see “Model Basic Queuing Systems”.

Storage with Servers
In a discrete-event simulation, a server stores entities for a length of time, called the service time,
then attempts to output the entity. During the service period, the block is serving the entity that it
stores.

An everyday example of a server is a person (such as a bank teller or a retail cashier) with whom you
perform a transaction with a projected duration. For more information, see “Model Basic Queuing
Systems”.

The service time for each entity is computed when the entity arrives. However, if the next block does
not accept the arrival of an entity that has completed its service, the server is forced to hold the
entity longer.

The distinguishing features of a server include:

• The number of entities it can serve simultaneously, which can be finite or infinite.
• The characteristics of, or the method of computing, the service times of arriving entities.
• Whether the server permits arriving entities to preempt entities that are already stored in the

server. For more information, see “Task Preemption in a Multitasking Processor”.

Tip In the absence of preemption, a finite-capacity server does not accept new arrivals when it is
already full. You can place a queue before each finite-capacity server to establish a place for entities
to stay while they are waiting for the server to accept them. Otherwise, the waiting entities might be
stored in various locations in the model and the behavior might be more difficult for you to predict or
analyze.

You can use a server to represent real-world systems such as:

• A person (such as a bank teller) who performs a transaction with each arriving customer
• A transmitter that processes and sends messages
• A machine that assembles parts in a factory
• A computer that executes programs
• The processing unit in a production line application
• The processor in a network application

 Overview of Queues and Servers in Discrete-Event Simulation

3-13

In some cases, a server does not represent a real-world system. A common modeling technique
involves a delay of duration zero (that is, an infinite server whose service time is zero) to provide a
place for an entity to reside to manipulate its attributes.

Use Events and Event Actions in Queuing Systems
You can use events and event actions to manipulate entity attributes and create custom behavior in
your queueing system. For more information about event actions, see “Events and Event Actions”.

Suppose that you want to change entity attributes when entities enter or exit the Entity Queue or the
Entity Server block. You can use actions that are invoked by events such as entry to a block, exit from
a block, or service completion. For more information, see “Model Basic Queuing Systems”. You can
also use event actions to create custom entity routing patterns. For more information, see “Use
Queue Event Actions to Model a Storage Tank”.

Serial Queue-Server Pairs
Connecting two queue-server pairs in series can represent successive operations on an entity. For
example, you can model how parts on an assembly line are processed sequentially by two machines.

Alternatively, you can model the same scenario by using a pair of servers without a queue between
them.

However, in the absence of a queue, if the first server completes its service on an entity, and if the
second server is available to accept a new entity:

• The entity must stay in the first server past the end of service.
• The first server cannot accept a new entity for service until the second server becomes available.

Connecting two queues in series might be useful if you are using entities to model items that
experience two distinct sets of physical conditions while in storage. For example, additional inventory
items that overflow one storage area have to stay in another storage area where a less well-regulated
temperature affects the items’ long-term quality.

Modeling the two storage areas as distinct queue blocks facilitates viewing the average length of time
that entities stay in the overflow storage area. For more information, see “Model Basic Queuing
Systems”.

3 Key Concepts in SimEvents Software

3-14

Parallel Queue-Server Pairs as Alternatives
Connecting two queue-server pairs in parallel, in which entities are routed to one or to the other
queue-server pair, can represent alternative operations. For example, you can model how vehicles
wait in line for one of several tollbooths at a toll plaza. In this case, the model must have a decision
logic, possibly in the form of a switch that precedes this pattern. For an example, see “Serve High-
Priority Customers by Sorting Entities Based on Priority”.

Connecting two queue-server pairs in parallel, in which a copy of each entity arrives at each, can
represent a multicasting scenario, such as sending a message to multiple recipients. Note that
copying entities might not make sense in some applications. For an example, see “Broadcast Entities
using Entity Multicasting”.

Author Custom Storage Blocks Using MATLAB Discrete-Event System
Block and Discrete-Event Chart
If you want to model more complex entity storage blocks and extend the behavior of the blocks
provided by the SimEvents library, use the MATLAB Discrete-Event System block and Discrete-Event
Chart block.

The MATLAB Discrete-Event System block extends System objects to create custom SimEvents blocks
in your model. For more information about authoring custom SimEvents blocks, see “Create Custom
Blocks Using MATLAB Discrete-Event System Block”.

The Discrete-Event Chart block uses Stateflow charts and provides a graphical language to create
custom storage blocks in your model. For more information, see “Flush Entities from a Queue-
Server”.

 Overview of Queues and Servers in Discrete-Event Simulation

3-15

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems”
• “Broadcast Entities using Entity Multicasting”
• “Use Queue Event Actions to Model a Storage Tank”
• “Serve High-Priority Customers by Sorting Entities Based on Priority”
• “Events and Event Actions”

3 Key Concepts in SimEvents Software

3-16

Inspect Statistics

4

Count Entities
In this section...
“Count Departures Across the Simulation” on page 4-2
“Count Departures per Time Instant” on page 4-2
“Reset a Counter upon an Event” on page 4-2
“Associate Each Entity with Its Index” on page 4-2

Using statistics, you can count entities across the simulation and per time instant.

Count Departures Across the Simulation
Use the d or a output from a block to learn how many entities have departed (or arrived at) the block.
The output signal also indicates when departures occurred. This method of counting is cumulative
throughout the simulation.

Count Departures per Time Instant
Suppose that you want to visualize entity departures from a particular block, and you want to reset
(that is, restart) the counter at each time instant. Visualizing departures per time instant can help
you:

• Detect simultaneous departures
• Compare the number of simultaneous departures at different time instants
• Visualize the departure times while keeping the plot axis manageable

For an example of counting simultaneous departures from a server in a cumulative way, see “Count
Simultaneous Departures from a Server”.

For an example of noncumulative counting of entity arrivals, see “Noncumulative Counting of
Entities”.

Reset a Counter upon an Event
Suppose that you want to count entities that depart from a particular block, and you want to reset the
counter at arbitrary times during the simulation. Resetting the counter can help you compute
statistics for evaluating your system over portions of the simulation.

During the simulation, the block counts departing entities and resets its counter whenever the input
signal satisfies your specified event criteria.

Associate Each Entity with Its Index
To associate an entity with its index, in the initialization section of the Entity Generator block, you
can associate an entity with its generation time:

1 Use a Simulink Function block with a clock block, such as Digital Clock, to create a Simulink
function.

4 Inspect Statistics

4-2

This function returns the current time.
2 In the Entity Generator block, create an attribute and associate it with the current time that the

Simulink function returns.

For an example, see Time stamp entities upon generation in the SimEvents Design Patterns
sublibrary.

See Also
Entity Queue

Related Examples
• “Explore Statistics and Visualize Simulation Results” on page 2-6
• “Count Simultaneous Departures from a Server”

 Count Entities

4-3

Simulate Multidomain Models

5

Create a Hybrid Model with Time-Based and Event-Based
Components

In this section...
“Communication between SimEvents and Simulink components” on page 5-2
“SimEvents Part of Model” on page 5-3
“Simulink Part of Model” on page 5-4
“Simulate the Hybrid Model” on page 5-5
“Event-Based and Time-Based Dynamics in the Simulation” on page 5-6

The example “Modeling Hybrid Systems - Tank Filling” shows tanks queuing up to be filled. In the
example, SimEvents component models event-based behavior while the Simulink component models
time-based dynamics.

Communication between SimEvents and Simulink components
Without the Selection Gate block and Simulink Function blocks, the flow of tanks in Discrete-Event
Process follows their generation, queuing, service, and termination. For more information about
building the SimEvents component of the model, see “Create a Discrete-Event Model” on page 2-2. To
learn more about writing event actions for the same model, see “Manage Entities Using Event
Actions” on page 2-13.

5 Simulate Multidomain Models

5-2

The Pump -Tank model is the Simulink component that represents the time-driven tank filling process.
When a tank is full, it generates a SimEvents message through the Hit Crossing block and the
message follows a similar flow of generation, queuing, service, and termination. The badge
denotes the transition between time-based and event-based behavior.

The arrival of a tank at the Entity Server block triggers the filling process in Pump-Tank model. When
a tank is full, Hit Crossing block labeled Tank Full generates a message . Arrival of this message at
the Processor in Interface component triggers the Simulink Function block to release the Selection
Gate for the full tank's departure.

Next, SimEvents and Simulink components of the model are presented in detail.

SimEvents Part of Model
The SimEvents part models the flow of tanks.

• The Entity Generator block generates the tanks.
• The Entity Queue block queues each tank in first-in-first-out (FIFO) mode.
• The Entity Server block calls the startFilling Simulink function to fill each tank. Several tanks

can be served at the same time.
• The Entity Server block in the Interface processes the SimEvents message generated by the Hit

Crossing block and calls the Simulink function to enable the Selection Gate subsystem for a
specific tank. The block also calls the Simulink function to reinitialize the Integrator block for the
next fill.

 Create a Hybrid Model with Time-Based and Event-Based Components

5-3

Simulink Part of Model
The Simulink part models the time-driven process of filling tanks.

• This component contains the logic to fill the tanks.
• Each tank has a Capacity attribute. The continuous time part models the process of filling up a

tank, modeled by the Integrator block. When a tank is filled to its capacity, the Selection Gate
subsystem releases the tank and the tank departs.

• This component also contains the Simulink function startFilling.
• The Hit Crossing block detects the completion of the tank filling process and sends a SimEvents

message regarding this event. This message is processed in the Interface, which triggers the
release of the tank by the Selection Gate and the reinitialization of the Integrator block for the
next fill.

5 Simulate Multidomain Models

5-4

Simulate the Hybrid Model
Run the “Modeling Hybrid Systems - Tank Filling” example. In the first scope, observe the fill process
for each pump.

In the second scope, observe the number of trucks leaving after being filled. The plot displays that
there are 15 trucks leaving the facility after their gas tanks were filled.

 Create a Hybrid Model with Time-Based and Event-Based Components

5-5

Event-Based and Time-Based Dynamics in the Simulation
In the “Modeling Hybrid Systems - Tank Filling” example, the time-based dynamics of the tank fill
coexist with the event-based dynamics of the tank flow system. When you run the simulation, the
solver and the event calendar both play a role. Upon major time steps of the solver, the simulation
solves the ordinary differential equations that represent the dynamics of the tank fill system. Solving
the event-based dynamics entails scheduling and processing events, such as service completion and
entity generation, on the SimEvents event calendar. Because the model uses a variable-step solver,
when events occur in the discrete-event system, the solver has a major time step.

To learn more about solvers, see “Solvers for Discrete-Event Systems”. To learn more about creating
event-based and time-based models, see “Working with SimEvents and Simulink”.

See Also
Entity Generator | Entity Queue | Entity Server

More About
• “Generate Entities When Events Occur”
• “Model Basic Queuing Systems”
• “Model Using Resources”
• “Solvers for Discrete-Event Systems”

5 Simulate Multidomain Models

5-6

	Introduction
	SimEvents Product Description
	Key Features

	Discrete-Event Simulation in Simulink Models
	A Simple Queuing System
	Modeling Communication Delay on an Anti-Lock Braking System
	Modeling a Hybrid System with Event-Based and Time-Based Components

	Related Products
	Information About Related Products
	Limitations on Usage with Related Products

	SimEvents Common Design Patterns
	Bibliography

	Build Simple Models with SimEvents Software
	Create a Discrete-Event Model
	Add SimEvents Blocks to a Model
	Configure Blocks
	A Simple Queuing System
	Results of the Simulation

	Explore Statistics and Visualize Simulation Results
	Explore a D/D/1 System Using Plots

	Manage Entities Using Event Actions
	Start with a Simple Queuing System
	Modify the Model
	Configure and Simulate Model
	Modified Model to Manage Entities in a Queueing System

	Trigger Simulink Components with Discrete Events in SimEvents

	Key Concepts in SimEvents Software
	Entities in a SimEvents Model
	Meaning of Entities in Different Applications
	Vary the Interpretation of Entities
	Visualize Entities
	Storing Entities
	Entity Types
	Data and Role of Entity Attributes
	Create Entities in a SimEvents Model

	Role of Entity Ports and Paths
	Entity Ports and Paths
	Definition of Entity Paths
	Implications of Entity Paths
	Designing Paths Using Input, Output, and Entity Combiner Blocks

	Overview of Queues and Servers in Discrete-Event Simulation
	Storage with Queues
	Storage with Servers
	Use Events and Event Actions in Queuing Systems
	Serial Queue-Server Pairs
	Parallel Queue-Server Pairs as Alternatives
	Author Custom Storage Blocks Using MATLAB Discrete-Event System Block and Discrete-Event Chart

	Inspect Statistics
	Count Entities
	Count Departures Across the Simulation
	Count Departures per Time Instant
	Reset a Counter upon an Event
	Associate Each Entity with Its Index

	Simulate Multidomain Models
	Create a Hybrid Model with Time-Based and Event-Based Components
	Communication between SimEvents and Simulink components
	SimEvents Part of Model
	Simulink Part of Model
	Simulate the Hybrid Model
	Event-Based and Time-Based Dynamics in the Simulation

